Hem James Webb hem de Hubble uzay teleskoplarından yapılan gözlemler, MACS0416 galaksi kümesinin bu renkli görüntüsünü oluşturdu.
Galaksilerin farklı renkleri mesafeleri gösterir, daha mavi galaksiler daha yakın, daha kırmızı galaksiler ise daha uzak veya tozludur.
Bazı galaksiler, ışığın içinden geçtiği alanı kütle çekimsel olarak büken büyük kütlelerin neden olduğu bir çarpıtma etkisi olan kütle çekimsel merceklenme nedeniyle çizgiler halinde görünür.
Evrenimiz birçok farklı dönemden geçti
Evrenimizin dönemleri bugün yaşamın var olması için gerekli sahneyi hazırlamıştır. Bilim insanları kozmik tarihi çözerek, evrenin kökeninden ve evriminden olası kaderine kadar bunun nasıl gerçekleştiğini araştırıyorlar.
Bu grafik evrenin tarihini ana hatlarıyla anlatıyor.
0 SANİYE | Başlangıçta evren son derece küçük, sıcak ve yoğun olarak ortaya çıktı
Bilim insanları evrenin başlangıcında tam olarak neyin var olduğundan emin değiller, ancak normal madde veya fiziğin olmadığını düşünüyorlar. Olan şeyler muhtemelen bugün beklediğimiz gibi davranmıyordu.
Sanatçının evrenin başlangıcına ait yorumu, erken kozmosun ve genişlemesinin tasvirleriyle birlikte.
10^-32 SANİYE | Evren hızla, korkusuzca şişti
Evren ilk ortaya çıktığında, hemen hemen anında dengesizleşti. Uzay, enflasyon olarak bilinen çok kısa bir süre boyunca ışık hızından daha hızlı genişledi. Bilim insanları hala bu üstel genişlemeyi neyin yönlendirdiğini araştırıyorlar.
Enflasyon sona erdiğinde, evren genişlemeye devam etti, ancak çok daha yavaş. Daha önce hızlı genişlemeyi sağlayan tüm enerji ışığa ve maddeye gitti – normal şeyler!
Küçük alt atomik parçacıklar – protonlar, nötronlar ve elektronlar – artık etrafta dolaşıyordu, ancak evren bunların birleşip atom oluşturması için çok sıcaktı.
Parçacıklar, özellikle kümelenmiş noktalarda, birlikte çekimlendi. Kütle çekimi ile parçacıkların birbirine yapışma yeteneği arasındaki itme ve çekme, salınımlar veya ses dalgaları yarattı .
Sanatçının, proton ve nötronların çarpışarak iyonize döteryum (bir proton ve bir nötrondan oluşan bir hidrojen izotopu) ve iyonize helyum (iki proton ve iki nötrondan oluşan) oluşturmasının yorumu.
ÜÇ DAKİKA | Protonlar ve nötronlar çok iyi bir şekilde birleşmiş
Yaklaşık üç dakika sonra evren genişledi ve protonlar ile nötronların birbirine yapışması için yeterince soğudu . Bu, ilk elementleri yarattı: hidrojen, helyum ve çok az miktarda lityum ve berilyum.
Ancak elektronların protonlar ve nötronlarla birleşmesi için hala çok sıcaktı. Bu serbest elektronlar, ışığı dağıtan ve evreni karanlık gösteren sıcak, sisli bir çorbada yüzüyordu.
Bu sanatçının animasyon konsepti, iyonize atomları (kırmızı lekeler), serbest elektronları (yeşil lekeler) ve ışık fotonlarını (mavi flaşlar) göstererek başlar. İyonize atomlar, nötr atomlar (kahverengi lekeler olarak gösterilir) oluşana kadar ışığı dağıtır ve ışığın uzayda daha uzağa gitmesi için yolu açar.
380 BİN YIL | Nötr atomlar oluştu ve ışık için boş bir alan bıraktı
Evren genişledikçe ve daha fazla soğudukça, elektronlar atomlara katıldı ve onları nötr hale getirdi. Elektron plazması ortadan kalktığında, biraz ışık çok daha uzağa gidebilirdi.
ESA’nın (Avrupa Uzay Ajansı) Planck uzay teleskopu tarafından çekilen, tüm gökyüzü boyunca kozmik mikrodalga arka planının (CMB) bir görüntüsü. CMB, evrende gözlemleyebildiğimiz en eski ışıktır. Donmuş ses dalgaları, mavi (daha soğuk) ve kırmızı (daha sıcak) renklendirmeyle gösterilen sıcaklıktaki minik dalgalanmalar olarak görülebilir.
Nötr atomlar oluştukça, alt atomik parçacıklar arasındaki itme ve çekmeyle oluşan ses dalgaları durdu. Dalgalar dondu ve çevrelerinden biraz daha yoğun dalgalanmalar bıraktı.
Fazla madde, hem normal hem de “karanlık” olmak üzere daha fazla maddeyi çekti. Karanlık madde, çevresi üzerinde kütle çekimsel etkiye sahiptir ancak görünmezdir ve ışıkla etkileşime girmez.
Bu animasyon, fotonların (hafif parçacıklar) nötr hidrojen atomları tarafından emilimini göstermektedir.
AYRICA 380 BİN YIL | Evren karanlık oldu – buna ne derseniz deyin, bilim insanları bu zaman dilimine Karanlık Çağ adını veriyor
Kozmik mikrodalga arka planı dışında, yıldızlar henüz oluşmadığı için bu çağda pek fazla ışık yoktu. Ve var olan ışık da genellikle çok uzağa gidemiyordu çünkü nötr hidrojen atomları ışığı emmede gerçekten iyiydi. Bu, kozmik karanlık çağlar olarak bilinen bir çağı başlattı.
Bu animasyon, gazın çekim etkisi nedeniyle kümelenmeye başlamasıyla yıldız oluşumunun başlangıcını göstermektedir. Bu protoyıldızlar, içlerindeki madde sıkıştıkça ısınır ve yüksek hızlarda maddeyi dışarı atarak, burada genişleyen ışık halkaları olarak gösterilen şok dalgaları yaratır.
200 MİLYON YIL | Yıldızlar gün ışığını yarattı (o gün ışığı hala hidrojen atomları tarafından engelleniyordu)
Zamanla, daha yoğun alanlar daha fazla maddeyi içine çekti, bazı yerlerde o kadar ağırlaştı ki bir çöküşü tetikledi. Madde içe doğru düştüğünde, nükleer füzyonun başlaması için yeterince sıcak hale geldi ve ilk yıldızların doğumunu işaret etti!
Çekim etkisiyle karanlık maddenin yapı oluşturmasının simülasyonu.
400 MİLYON YIL | Karanlık madde, galaksileri birbirine bağlayan görünmez bir ip gibi davrandı
Evren genişledikçe, daha önce yaratılan donmuş ses dalgaları — ki bunlara artık yıldızlar, gaz, toz ve yıldızların ürettiği daha fazla element dahildir — esnedi ve daha fazla kütle çekmeye devam etti. Malzemeyi bir araya getirmek sonunda ilk galaksileri, galaksi kümelerini ve geniş ölçekli, ağ benzeri yapıyı oluşturdu.
Bu animasyonda, yıldızlardan gelen ultraviyole ışık, elektronlarını kopararak hidrojen atomlarını iyonlaştırır. Zaten iyonlaşmış bölgeler mavi ve yarı saydamdır, iyonlaşmaya uğrayan bölgeler kırmızı ve beyazdır ve nötr gaz bölgeleri karanlık ve opaktır.
1 MİLYAR YIL | Yıldızlardan gelen ultraviyole ışık evreni sonsuza dek şeffaf hale getirdi
İlk yıldızlar devasa ve sıcaktı, yani yakıt kaynaklarını hızla yaktılar ve kısa ömürler yaşadılar. Ancak, yıldızların etrafındaki nötr hidrojeni parçalamaya yardımcı olan ve ışığın daha uzağa gitmesine izin veren enerjik ultraviyole ışık yaydılar.
Evrenin zaman içindeki genişlemesinin grafiğini gösteren animasyon. Kozmik genişleme enflasyonun sona ermesinin ardından yavaşlarken, yaklaşık 5 milyar yıl önce hızlanmaya başladı. Bilim insanları hala bunun nedenini bilmiyor.
10 MİLYAR YIL SONRA | Karanlık enerji baskın hale geldi, kozmik genişlemeyi hızlandırdı ve büyük bir soru yarattı…?
Evrenin zaman içindeki genişleme oranını inceleyen bilim insanları, bunun hızlandığına dair şok edici bir keşifte bulundular.
Sonunda çekim etkisinin maddenin kendisini çekmesine ve genişlemeyi yavaşlatmasına neden olması gerektiğini düşündüler.
Karanlık enerji olarak adlandırılan gizemli bir basınç, kozmik genişlemeyi hızlandırıyor gibi görünüyor. Evrenin hikayesinin yaklaşık 10 milyar yılında, karanlık enerji -her ne ise- madde üzerinde baskın hale geldi.
Ay’ın göğünde yükselen Dünya’nın bir görüntüsü. Apollo 8 astronotları, Ay’a ilk mürettebatlı görev sırasında bu manzarayı gördüler.
13,8 MİLYAR YIL | Bugün bildiğimiz evren: Başlangıçtan itibaren 359.785.714.285,7 iki hafta
Bugün oluşumuzu evrenimizin gösterdiği her biri benzersiz aşamasına borçluyuz. Ancak bilim insanlarının bu çağlar hakkında hala birçok sorusu var.
Yakında fırlatılacak olan Nancy Grace Roman Uzay Teleskobu, evrenin evrimini ve nihai kaderini yöneten, yeterince anlaşılmamış iki yönü olan karanlık enerji ve karanlık madde gibi kozmik gizemleri keşfetmek için geçmişe bakacak.